Pandas 快速入门
Pandas 是用于数据分析 Python 的软件库,提供了大量快速便捷地处理数据的函数和方法。
本文翻译自官方文档 10 Minutes to pandas,对应的 pandas 版本为 2.1.3
。
导入所需的软件包:
In [1]: import numpy as np
In [2]: import pandas as pd
Pandas 基础数据结构
Pandas 提供了两类处理数据的类别:
Series
:任何类型的一维标签阵列数据
- 例如整数、字符串、Python 对象等。
DataFrame
:二维数据结构,它储存着像一个二维数组或带行列的表的数据。
对象创建
通过传递列表创建 Series
,其中 pandas 会创建默认的整数索引:
In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])
In [4]: s
Out[4]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
通过传递具有日期时间索引和标签列的 NumPy 数组来创建 DataFrame
:
In [5]: dates = pd.date_range("20130101", periods=6)
In [6]: dates
Out[6]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))
In [8]: df
Out[8]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
通过传递对象字典来创建 DataFrame
:
In [9]: df2 = pd.DataFrame(
...: {
...: "A": 1.0,
...: "B": pd.Timestamp("20130102"),
...: "C": pd.Series(1, index=list(range(4)), dtype="float32"),
...: "D": np.array([3] * 4, dtype="int32"),
...: "E": pd.Categorical(["test", "train", "test", "train"]),
...: "F": "foo",
...: }
...: )
...:
In [10]: df2
Out[10]:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
生成的 DataFrame
列有不同的数据类型 dtypes
:
In [11]: df2.dtypes
Out[11]:
A float64
B datetime64[s]
C float32
D int32
E category
F object
dtype: object
使用 IPython 时,按 TAB
可以自动补全:
In [12]: df2.<TAB> # noqa: E225, E999
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.columns
df2.align df2.copy
df2.all df2.count
df2.any df2.combine
df2.append df2.D
df2.apply df2.describe
df2.applymap df2.diff
df2.B df2.duplicated
正如你可以看到的那样,A
、B
、C
和 D
等列在自动补全中。后续列已简略。
查看数据
使用 DataFrame.head
和 DataFrame.tail
分别查看 df
的顶部和底部的行:
In [13]: df.head()
Out[13]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [14]: df.tail(3)
Out[14]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
显示索引 DataFrame.index
,列 DataFrame.columns
和 numpy 数据:
In [15]: df.index
Out[15]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
In [16]: df.columns
Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
以 DataFrame.to_numpy
返回底层数据的数字表示,而不带索引或列标签:
In [17]: df.to_numpy()
Out[17]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
NumPy 整个数组是同一种类型,而 pandas DataFrames 每列有一种类型。当你调用 DataFrame.to_numpy
时,pandas 将找到可以容纳 DataFrame 中所有数据类型的 NumPy 数据类型。如果通用数据类型是 object
,DataFrame.to_numpy
将复制数据。
In [18]: df2.dtypes
Out[18]:
A float64
B datetime64[s]
C float32
D int32
E category
F object
dtype: object
In [19]: df2.to_numpy()
Out[19]:
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']],
dtype=object)
DataFrame.description
显示数据的快速统计摘要:
In [20]: df.describe()
Out[20]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804
对数据 df
进行转置:
In [21]: df.T
Out[21]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
DataFrame.sort_index
按轴排序:
In [22]: df.sort_index(axis=1, ascending=False)
Out[22]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
DataFrame.sort_values
按值排序:
In [23]: df.sort_values(by="B")
Out[23]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选择数据
虽然标准 Python / Numpy 表达式非常直观并且可以方便地用于交互式工作,但对于生产代码,我们建议使用优化的 pandas 数据访问方法 DataFrame.at
、DataFrame.iat
、DataFrame.loc
和 DataFrame.iloc
。
获取数据项 ([]
)
传递单个标签会选择一个列,将会返回一个 Series
,相当于 df.A
:
In [24]: df["A"]
Out[24]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
对于 DataFrame
,传递一个分片 :
对行进行切片:
In [25]: df[0:3]
Out[25]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [26]: df["20130102":"20130104"]
Out[26]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
按标签选择
选择匹配标签的行:
In [27]: df.loc[dates[0]]
Out[27]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
选择所有行 (:
),并选择列标签:
In [28]: df.loc[:, ["A", "B"]]
Out[28]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
对于标签切片,起止两个端点都包括在内:
In [29]: df.loc["20130102":"20130104", ["A", "B"]]
Out[29]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
选择单个行和列标签,将返回一个标量:
In [30]: df.loc[dates[0], "A"]
Out[30]: 0.4691122999071863
快速访问标量 (相当于上面的方法):
In [31]: df.at[dates[0], "A"]
Out[31]: 0.4691122999071863
按位置选择
通过传递整数位置进行选择:
In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64
使用整数进行切片,类似于 NumPy/Python:
In [33]: df.iloc[3:5, 0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
指定整数位置列表取行列:
In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
对行进行切片:
In [35]: df.iloc[1:3, :]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
对列进行切片:
In [36]: df.iloc[:, 1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
按位置取值:
In [37]: df.iloc[1, 1]
Out[37]: -0.17321464905330858
快速按位置取值 (相当于上面的方法):
In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858
布尔索引
选择 df.A
大于 0
的行。
In [39]: df[df["A"] > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
从符合布尔条件的 DataFrame
中选择值:
In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988
使用 Series.isin
方法进行过滤:
In [41]: df2 = df.copy()
In [42]: df2["E"] = ["one", "one", "two", "three", "four", "three"]
In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
In [44]: df2[df2["E"].isin(["two", "four"])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置值
设置新列会自动按索引对齐数据:
In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20130102", periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
In [47]: df["F"] = s1
按标签设置新的值:
In [48]: df.at[dates[0], "A"] = 0
按位置设置新的值:
In [49]: df.iat[0, 1] = 0
通过 NumPy 数组来设置新的值:
In [50]: df.loc[:, "D"] = np.array([5] * len(df))
上述操作结果如下:
In [51]: df
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0
2013-01-05 -0.424972 0.567020 0.276232 5.0 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5.0 5.0
通过 where
设置值:
In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
Out[54]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5.0 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5.0 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5.0 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5.0 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5.0 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5.0 -5.0
缺失值
pandas 使用 np.nan
来表示缺失值,缺失值默认不参与任何计算。
reindex()
允许更改/添加/删除指定轴上的索引,并返回数据的副本:
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])
In [56]: df1.loc[dates[0] : dates[1], "E"] = 1
In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 NaN
DataFramework.dropna
将删除任何包含缺失值的行:
In [58]: df1.dropna(how="any")
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
DataFramework.fillna
对缺失值进行填充:
In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5.0 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 5.0
isna
获取 nan
值的布尔值掩码:
In [60]: pd.isna(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True
操作
状态
一般情况下,操作会排除缺失值。
计算每列的平均值:
In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
计算每行的平均值:
In [62]: df.mean(axis=1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
使用具有不同索引或列的另一个 Series
或 DataFrame
进行操作会将结果与索引或列标签的并集对齐。此外,pandas 会自动沿指定维度进行广播,并会用 np.nan
填充未对齐的标签。
In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64
In [65]: df.sub(s, axis="index")
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN
用户自定义函数
DataFrame.agg
和 DataFrame.transform
分别应用一个 用户自定义的函数来减少或广播其结果。
In [66]: df.agg(lambda x: np.mean(x) * 5.6)
Out[66]:
A -0.025054
B -2.150294
C -3.851445
D 28.000000
F 16.800000
dtype: float64
In [67]: df.transform(lambda x: x * 101.2)
Out[67]:
A B C D F
2013-01-01 0.000000 0.000000 -152.716721 506.0 NaN
2013-01-02 122.665737 -17.529322 12.063922 506.0 101.2
2013-01-03 -87.219115 -212.982405 -50.086843 506.0 202.4
2013-01-04 73.021382 -71.525239 -105.204988 506.0 303.6
2013-01-05 -43.007200 57.382459 27.954680 506.0 404.8
2013-01-06 -68.177398 11.501219 -149.616767 506.0 506.0
值计数
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64
In [70]: s.value_counts()
Out[70]:
4 5
2 2
6 2
1 1
Name: count, dtype: int64
字符串方法
Series
在 str
属性中配备了一组字符串处理方法,可以方便地对数组的每个元素进行操作,如下面的代码片段所示。
In [71]: s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])
In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
合并
Concat
pandas 提供了各种工具,可以在连接/合并类型操作的情况下轻松地将 Series
和 DataFrame
与索引和关系代数功能的各种集合逻辑组合在一起。
使用 concat
将 pandas 对象按行连接在一起:
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
向 DataFrame 添加列相对较快。但是,添加行需要副本,并且可能很昂贵。我们建议将预先构建的记录列表传递给 DataFrame
构造函数,而不是通过迭代地向其追加记录来构建 DataFrame
。
Join
merge
启用沿特定列的 SQL 样式联接类型。
In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})
In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})
In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2
In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5
In [81]: pd.merge(left, right, on="key")
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
按值 merge
:
In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})
In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})
In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2
In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5
In [86]: pd.merge(left, right, on="key")
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5